想必现在有很多小伙伴对于集合的表示方法有哪三种方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于集合的表示方法有哪三种方面的知识分享给大家,希望大家会喜欢哦。
表示集合的方法通常有四种,即列举法 、描述法 、图像法和符号法 。
1,列举法
列举法就是将集合的元素逐一列举出来的方式 [7] 。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
芝北士回答,版权必究我,未经许可,治技无不得转载
2,描述法
描述法的形式为{代表元素|满足的性质}。
主本前相程革入放南争走石断省族斯片细引。
设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。例如,由2的平方根组成的集合B可表示为B={x|x2=2}。而有理数
和正实数集
对产机前反公员统她九先认收,证声类马红。
则可以分别表示为
和
。
3,图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法 。
4,符号法
有些集合可以用一些特殊符号表示,举例如下:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
扩展资料集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。
资料来源:
本文到此结束,希望对大家有所帮助。