整式的运算法则概念(整式的运算)

导读 大家好,我是小科,我来为大家解答以上问题。整式的运算法则概念,整式的运算很多人还不知道,现在让我们一起来看看吧!一、整式1.单项式①...

大家好,我是小科,我来为大家解答以上问题。整式的运算法则概念,整式的运算很多人还不知道,现在让我们一起来看看吧!

一、整式

1.单项式

①由数与字母的乘积组成的代数式叫做单项式。单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。

③一个单项式中,所有字母的指数和叫做这个单项式的次数。

2.多项式

①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。

其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。

3.整式

整式单项式和多项式统称为整式。

二、整式的加减

1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。

2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

三、同底数幂相乘

同底数幂的乘法法则:

(m,n都是正数)是幂的运算中最基本的法则

在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为

(其中m、n、p均为正数);

⑤公式还可以逆用:

(m、n均为正整数)。

四、幂的乘方与积的乘方

1. 幂的乘方法则:

(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

2.

3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如:

转化为:

4. 底数有时形式不同,但可以化成相同。

5. 要注意区别(ab)的n次方与(a+b)的n次方意义是不同的。

6. 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即:

(n为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

五、同底数幂的除法

1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:

(a≠0,m、n都是正数,且m>n)。

2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0;

②任何不等于0的数的0次幂等于1;

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即:

,( a≠0,p是正整数)。

本文到此讲解完毕了,希望对大家有帮助。

最新文章